Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Med Sci Monit ; 27: e934077, 2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1326004

ABSTRACT

Current treatments for patients with Alzheimer's disease aim to improve behavioral, cognitive, and non-cognitive symptoms. There have been no new drug approvals for preventing or treating Alzheimer's disease for more than two decades. Drug development in Alzheimer's disease aims to identify disease-modifying therapies that will delay or slow the clinical course of this disease. More than 50% of the current Alzheimer's disease drug pipeline now involves immunotherapies or oral small molecule agents. The most promising disease-modifying drug targets are amyloid ß and tau protein. In June 2021, aducanumab, a humanized recombinant monoclonal antibody to amyloid ß, was the first potential disease-modifying therapy approved by the US Food and Drug Administration (FDA) to treat Alzheimer's disease and mild cognitive impairment. Accelerated approval of aducanumab was based on the results of only one of two phase 3 clinical trials. Several clinical trials of targeted disease-modifying immunotherapies to the tau protein and amyloid ß that commenced before the current COVID-19 pandemic have been delayed. This Editorial aims to provide an update on past, present, and future disease-modifying therapies in Alzheimer's disease, including targeted therapies for amyloid ß and tau protein.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/immunology , Humans , Immunotherapy/methods , Immunotherapy/trends , Tauopathies/drug therapy
2.
J Alzheimers Dis ; 82(3): 883-898, 2021.
Article in English | MEDLINE | ID: covidwho-1259331

ABSTRACT

Cognitive impairment following SARS-CoV-2 infection is being increasingly recognized as an acute and possibly also long-term sequela of the disease. Direct viral entry as well as systemic mechanisms such as cytokine storm are thought to contribute to neuroinflammation in these patients. Biomarkers of COVID-19-induced cognitive impairment are currently lacking, but there is some limited evidence that SARS-CoV-2 could preferentially target the frontal lobes, as suggested by behavioral and dysexecutive symptoms, fronto-temporal hypoperfusion on MRI, EEG slowing in frontal regions, and frontal hypometabolism on 18F-FDG-PET. Possible confounders include cognitive impairment due to hypoxia and mechanical ventilation and post-traumatic stress disorder. Conversely, patients already suffering from dementia, as well as their caregivers, have been greatly impacted by the disruption of their care caused by COVID-19. Patients with dementia have experienced worsening of cognitive, behavioral, and psychological symptoms, and the rate of COVID-19-related deaths is disproportionately high among cognitively impaired people. Multiple factors, such as difficulties in remembering and executing safeguarding procedures, age, comorbidities, residing in care homes, and poorer access to hospital standard of care play a role in the increased morbidity and mortality. Non-pharmacological interventions and new technologies have shown a potential for the management of patients with dementia, and for the support of their caregivers.


Subject(s)
Alzheimer Disease , Brain , COVID-19/complications , Cognitive Dysfunction , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Biomarkers/analysis , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Brain/virology , COVID-19/immunology , COVID-19/psychology , COVID-19/therapy , Cognitive Dysfunction/immunology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/virology , Comorbidity , Humans , Neuroimaging/methods , Neuroimmunomodulation/immunology , Patient Care , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
3.
BMC Neurol ; 21(1): 157, 2021 Apr 12.
Article in English | MEDLINE | ID: covidwho-1194442

ABSTRACT

BACKGROUND: ALS patients have changed peripheral immunity. It is unknown whether peripheral immunity is related to cognitive dysfunction in ALS patients. OBJECTIVE: To explore the relationship between the peripheral blood lymphocyte subsets and the cognitive status in ALS patients. METHODS: Among 81 ALS patients, we compared the demographic, clinical, and peripheral levels of total T lymphocyte, CD4+ T lymphocyte, CD8+ T lymphocyte, B lymphocyte, and NK cell between those with cognitive impairment (ALS-ci) and those without (ALS-nci). The cognitive status was evaluated via the Chinese version of the Edinburgh cognitive and behavioral screen (ECAS). Significant predictors of cognitive impairment in univariate logistic regression analysis were further examined using multivariate logistic regression analysis. RESULTS: 39.5% of all ALS patients had cognitive impairment. The ALS-ci group had shorter education time, older age at both symptom onset and testing, longer disease duration, and lower levels of peripheral total, CD4+, and CD8+ T lymphocyte and B lymphocyte than the ALS-nci group. Frequency of behavioral impairment did not differ between the two groups. While parameters with significant differences identified by group comparison were also significant predictors of cognitive impairment in univariate logistic regression analysis except the level of B lymphocyte, only older age at testing, education time less than 9 years, and lower level of CD4+ T lymphocyte remained significant in multivariate logistic regression analysis. The predictive model combining these three parameters had an area under the receiver operating characteristic curve value of 0.842 with a sensitivity of 90.6% and a specificity of 67.3%. CONCLUSION: In Chinese ALS patients, blood CD4+ T lymphocyte might help evaluate cognitive impairment along with age and education level.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , CD4-Positive T-Lymphocytes , Cognitive Dysfunction/immunology , Lymphocyte Subsets , Adult , Aged , Amyotrophic Lateral Sclerosis/complications , Asian People , CD4 Lymphocyte Count , Cognitive Dysfunction/diagnosis , Educational Status , Female , Humans , Male , Middle Aged , Neuropsychological Tests , ROC Curve
4.
J Neurovirol ; 27(1): 191-195, 2021 02.
Article in English | MEDLINE | ID: covidwho-1059483

ABSTRACT

As cases of coronavirus disease 2019 (COVID-19) mount worldwide, attention is needed on potential long-term neurologic impacts for the majority of patients who experience mild to moderate illness managed as outpatients. To date, there has not been discussion of persistent neurocognitive deficits in patients with milder COVID-19. We present two cases of non-hospitalized patients recovering from COVID-19 with persistent neurocognitive symptoms. Commonly used cognitive screens were normal, while more detailed testing revealed working memory and executive functioning deficits. An observational cohort study of individuals recovering from COVID-19 (14 or more days following symptom onset) identified that among the first 100 individuals enrolled, 14 were non-hospitalized patients reporting persistent cognitive issues. These 14 participants had a median age of 39 years (interquartile range: 35-56), and cognitive symptoms were present for at least a median of 98 days (interquartile range: 71-120 following acute COVID-19 symptoms); no participants with follow-up evaluation reported symptom resolution. We discuss potential mechanisms to be explored in future studies, including direct viral effects, indirect consequences of immune activation, and immune dysregulation causing auto-antibody production.


Subject(s)
COVID-19/physiopathology , Cognitive Dysfunction/physiopathology , SARS-CoV-2/pathogenicity , Adult , COVID-19/complications , COVID-19/immunology , COVID-19/virology , Cognitive Dysfunction/complications , Cognitive Dysfunction/immunology , Cognitive Dysfunction/virology , Executive Function/physiology , Female , Humans , Memory, Short-Term/physiology , Middle Aged , Neuropsychological Tests , Outpatients , Time Factors
5.
Cancer Immunol Immunother ; 70(4): 1127-1142, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-841222

ABSTRACT

Cytokine storm can result from cancer immunotherapy or certain infections, including COVID-19. Though short-term immune-related adverse events are routinely described, longer-term immune consequences and sequential immune monitoring are not as well defined. In 2006, six healthy volunteers received TGN1412, a CD28 superagonist antibody, in a first-in-man clinical trial and suffered from cytokine storm. After the initial cytokine release, antibody effect-specific immune monitoring started on Day + 10 and consisted mainly of evaluation of dendritic cell and T-cell subsets and 15 serum cytokines at 21 time-points over 2 years. All patients developed problems with concentration and memory; three patients were diagnosed with mild-to-moderate depression. Mild neutropenia and autoantibody production was observed intermittently. One patient suffered from peripheral dry gangrene, required amputations, and had persistent Raynaud's phenomenon. Gastrointestinal irritability was noted in three patients and coincided with elevated γδT-cells. One had pruritus associated with elevated IgE levels, also found in three other asymptomatic patients. Dendritic cells, initially undetectable, rose to normal within a month. Naïve CD8+ T-cells were maintained at high levels, whereas naïve CD4+ and memory CD4+ and CD8+ T-cells started high but declined over 2 years. T-regulatory cells cycled circannually and were normal in number. Cytokine dysregulation was especially noted in one patient with systemic symptoms. Over a 2-year follow-up, cognitive deficits were observed in all patients following TGN1412 infusion. Some also had signs or symptoms of psychological, mucosal or immune dysregulation. These observations may discern immunopathology, treatment targets, and long-term monitoring strategies for other patients undergoing immunotherapy or with cytokine storm.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , CD28 Antigens/agonists , COVID-19/immunology , Cognitive Dysfunction/immunology , Cytokine Release Syndrome/immunology , Drug-Related Side Effects and Adverse Reactions/immunology , Immunotherapy/adverse effects , SARS-CoV-2/physiology , T-Lymphocytes/immunology , Adult , Antibodies, Monoclonal, Humanized/pharmacology , Cognitive Dysfunction/etiology , Cohort Studies , Cytokine Release Syndrome/etiology , Follow-Up Studies , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL